Selection index - solutions to exercises

1. Performance testing, 2 registrations:

$$(\alpha(2 \text{ rec}))$$
 (α)

$$\frac{1 + (2 - 1)0.4}{2} b = 1 \times 0.3$$

which gives
$$b = 0.4286$$

$$r_{TI} = \sqrt{b \times a_{i\alpha}} = \sqrt{0.7241 \times 0.5} = 0.65$$

7 progenies (HS):

$$(\alpha)$$

$$\frac{1 + (7 - 1)0.25 \times 0.3}{7} \quad b = 0.5 \times 0.3$$

which gives
$$b = 0.7241$$

$$r_{TI} = \sqrt{0.7241 \times 0.5} = 0.60$$

Conclusion: Performance testing gives somewhat higher accuracy.

2. a) The ram itself = X_1 (1 reg.) = α

$$\frac{\frac{1+(n_1-1)r}{n_1}+(p_1-1)\times a_{11}\times h^2}{p_1}\times \sigma_X^2\times b = a_{1\alpha}\times h^2\times \sigma_X^2$$

When $n_1 = p_1 = 1$ and $a_{1\alpha} = 1$ we get

$$1 \cong b = 1 \cong h^2$$

$$b = h^2 = 0.60$$

$$r_{TI} = \sqrt{\sum_{i=1}^{n} \frac{b_i a_{i\alpha} \times h^2 \times \sigma_X^2}{\sigma_T^2}} = \sqrt{b_i \times a_{i\alpha}} = \sqrt{b} = 0.77$$

b) The ram itself = α

$$a_{1\alpha} = \frac{1}{2}$$

10 progenies = X_1 (1 reg.)

$$n_1 = 1$$

$$n_1 = 1$$

$$P_1 = 10$$

$$a_{11} = a_{HS} = \frac{1}{4}$$

$$\frac{\frac{1+(1-1)r}{1}+(10-1)\times\frac{1}{4}\times0.60}{10}\times b = \frac{1}{2}\times0.60$$

$$\frac{\frac{1+9}{1} \times \frac{1}{4} \times 0.6}{10} \times b = 0.30 \quad \text{which gives } b = 1.28$$

$$r_{TI} = \sqrt{b_i \times a_{i\alpha}} = \sqrt{1.28 \times \frac{1}{2}} = 0.80$$

For such a high heritability, information on the ram itself gives almost equally accurate estimates of the breeding value as information on 10 progenies.

2

3. a) Dam of the cow = X_2 (1 rec.)

$$\downarrow$$

Cow itself = $\alpha = X_1$ (1 rec.)

$$T = I = b_1 X_1 + b_2 X_2$$
 when $a_{12} = 0.5;$ $a_{1\alpha} = 1;$ $a_{2\alpha} = 0.5$ $h^2 = 0.20$ we get

$$(\alpha) \qquad (Dam) \qquad (\alpha)$$

$$(\alpha) \qquad \begin{bmatrix} 1 & 0.5 \times 0.20 \\ 0.5 \times 0.20 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 1 \times 0.20 \\ 0.5 \times 0.20 \end{bmatrix}$$

$$\begin{cases} b_1 \times 1 + b_2 \times 0.10 &= 0.20 \\ b_1 \times 0.10 + b_2 \times 1 &= 0.10 \end{cases}$$

$$\begin{cases} b_1 \times 0.1 & b_2 = 0.20 \Rightarrow \\ 0.1 & b_1 + b_2 = 0.10 \end{cases} \begin{cases} b_1 = 0.192 \\ b_2 = 0.081 \end{cases}$$

b_i is put into the index equation

$$I = 0.192X_1 + 0.081X_2$$

b)
$$r_{TI} = \sqrt{\sum_{i=1}^{n} b_i a_{i\alpha}} = \sqrt{b_1 a_{1\alpha} + b_2 a_{2\alpha}} = \sqrt{0.192 \times 1 + 0.081 \times 0.5} = \sqrt{0.232} = 0.482$$

c)
$$I = b_1 X_1$$

 $b_1 \times 1 = 1 \times \cong h^2$
 $b_1 = h^2 = 0.20$
 $r_{TI} = \sqrt{0.20 \times 1} = 0.447$

For a medium high heritability as this one, we loose comparatively little if we do not include information on the dam of the cow r_{TI} decreases from 0.482 to 0.447.

4. a) Dam of the cow =
$$X_2$$
 (1 rec.)

Maternal sister of the cow = X_3 (1 rec.) The cow itself = $\alpha = X_1$ (1 rec.)

$$I = b_1 X_1 + b_2 X_2 + b_3 X_3$$

b)
$$r_{TI} = \sqrt{\sum_{i=1}^{n} b_i a_{i\alpha}} = \sqrt{0.191 \times 1 + 0.078 \times 0.5 + 0.033 \times 0.25} = \sqrt{0.2387} = 0.49$$

This is the highest r_{TI} value. However it is only slightly higher than in exercise 3 which shows that a record on a maternal sister only contributes to a small extent to the accuracy of the breeding value estimation.

5. a)
$$h_1^2 = \frac{88.2}{187.7} = 0.47$$

$$h_2^2 = \frac{5.2}{15.2} = 0.34$$

$$r_p = \frac{\sigma_{p_1 p_2}}{\sqrt{\sigma_{p_1}^2 \sigma_{p_2}^2}}$$

$$\sigma_{p_1 p_2} = -0.05 \times \sqrt{187.7 \times 15.2} = -2.67$$

$$r_g = \frac{\sigma_{A_1 A_2}}{\sqrt{\sigma_{A_1}^2 \times \sigma_{A_2}^2}}$$

$$\sigma_{A_1 A_2} = -0.54 \times \sqrt{88.2 \times 5.2} = -11.56$$

b)
$$I = b_1 X_1 + b_2 X_2$$

$$T = v_1 T_1 + v_2 T_2$$

$$\underline{P} \underline{b} = \underline{G} \underline{v}$$

$$\begin{bmatrix} 187.7 & -2.67 \\ -2.67 & 15.2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 88.2 & -11.56 \\ -11.56 & 5.2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

c)
$$T = T_2$$

(1)
$$[187.7 -2.67][b_1]$$
 $[-11.56]$

$$\begin{array}{ccc} (1) & \begin{bmatrix} 187.7 & -2.67 \\ -2.67 & 15.2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} & = & \begin{bmatrix} -11.56 \\ 5.2 \end{bmatrix} \end{array}$$